Craniofacial Reconstruction Using Rational Cubic Ball Curves

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Craniofacial Reconstruction Using Rational Cubic Ball Curves

This paper proposes the reconstruction of craniofacial fracture using rational cubic Ball curve. The idea of choosing Ball curve is based on its robustness of computing efficiency over Bezier curve. The main steps are conversion of Digital Imaging and Communications in Medicine (Dicom) images to binary images, boundary extraction and corner point detection, Ball curve fitting with genetic algor...

متن کامل

3D Reconstruction Using Cubic Bezier Spline Curves and Active Contours (Case Study)

Introduction 3D reconstruction of an object from its 2D cross-sections (slices) has many applications in different fields of sciences such as medical physics and biomedical engineering. In order to perform 3D reconstruction, at first, desired boundaries at each slice are detected and then using a correspondence between points of successive slices surface of desired object is reconstructed. Mate...

متن کامل

Looking for Rational Curves on Cubic Hypersurfaces

The aim of these lectures is to study rational points and rational curves on varieties, mainly over finite fields Fq. We concentrate on hypersurfaces Xn of degree ≤ n+ 1 in Pn+1, especially on cubic hypersurfaces. The theorem of Chevalley–Warning (cf. Esnault’s lectures) guarantees rational points on low degree hypersurfaces over finite fields. That is, if X ⊂ Pn+1 is a hypersurface of degree ≤...

متن کامل

Cubic Fourfolds and Spaces of Rational Curves

For a general nonsingular cubic fourfold X ⊂ P5 and e ≥ 5 an odd integer, we show that the space Me parametrizing rational curves of degree e on X is non-uniruled. For e ≥ 6 an even integer, we prove that the generic fiber dimension of the maximally rationally connected fibration of Me is at most one, i.e. passing through a very general point of Me there is at most one rational curve. For e < 5...

متن کامل

Rational Curves on Smooth Cubic Hypersurfaces

We prove that the space of rational curves of a fixed degree on any smooth cubic hypersurface of dimension at least four is irreducible and of the expected dimension. Our methods also show that the space of rational curves of a fixed degree on a general hypersurface in Pn of degree 2d ≤ min(n+4, 2n−2) and dimension at least three is irreducible and of the expected dimension.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: PLOS ONE

سال: 2015

ISSN: 1932-6203

DOI: 10.1371/journal.pone.0122854